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In present paper, a novel immersed boundary-thermal lattice Boltzmann method by the
name of ‘‘an equilibrium internal energy density approach” is proposed to simulate the
flows around bluff bodies with the heat transfer. The main idea is to combine the immersed
boundary method (IBM) with the thermal lattice Boltzmann method (TLBM) based on the
double population approach. The equilibrium internal energy density approach based on
the equilibrium velocity approach [X. Shan, H. Chen, Lattice Boltzmann model for simulat-
ing flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815] is used to
combine IBM with TLBM. The idea of the equilibrium internal energy density approach is
that the satisfaction of the energy balance between heat source on the immersed boundary
point and the amount of change of the internal energy density according to time ensures
the temperature boundary condition on the immersed boundary. The advantages of this
approach are the simple concept, easy implementation and the utilization of original gov-
erning equation without modification. The simulation of natural convection in a square
cavity with various body shapes for different Rayleigh numbers has been conducted to val-
idate the capability and the accuracy of present method on solving heat transfer problems.
Consequently, the present results are found to be in good agreement with those of previous
studies.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Recently, many researchers have adapted various models using the standard lattice Boltzmann method (LBM) to describe
the physical phenomenon of fluid. Unlike conventional numerical methods that find solutions of the Navier–Stokes equation
based on the macroscopic continuum system, the LBM is based on the kinetic theory of gases and can be characterized as a
mesoscopic approach [1].

The LBM uses gas dynamics and represents flow characteristics due to variation of single particle distributions. The LBM is
numerically stable and computationally efficient, and highly accurate. Although with these advantages, the LBM still has a
few weak points that limit it as a practical computational fluid dynamics tool. One of these shortcomings is the lack of a sat-
isfactory thermal lattice Boltzmann model to solve heat transfer problems like in conventional methods. Many researchers
. All rights reserved.
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have proposed various thermal lattice Boltzmann models to come with satisfactory solutions for thermal phenomenon
problems.

In general, the current thermal models can be classified into three categories: the multi-speed model, the passive-scalar
model, the double population model. The multi-speed model is an approach based on the isothermal lattice Boltzmann mod-
el which is extended only using density distribution function [2–4]. This model suffers from severe numerical instability and
can be simulated in only a narrow temperature range. The passive-scalar model enhanced the numerical stability compared
with the multi-speed model. In this model, the temperature was simulated using a separate distribution function, which is
independent of the density distribution and the temperature evolution equation is the same as a passive scalar under the
condition of negligible viscous heat dissipation and pressure work [5,6]. The double population model proposed by He
et al. [7] can be derived from discretization of the continuous evolution equation for the internal energy distribution function
in the same way the isothermal LBM was derived in temporal, spatial and momentum spaces. The double population model
uses an independent distribution function to calculate a variation of temperature. This model is similar to the passive-scalar
model from this point of view. However, it has enhanced numerical stability and contains the effects of viscous heat dissi-
pation and pressure work for considering passive-scalar model.

Another one of shortcomings of standard LBM is that it is not easy to implement the complex physical geometries owing
to the constraints such as the regular square grid system with a uniform size and a constant time step. In order to overcome
these problems, He et al. [8] proposed the interpolation-supplemented model (IS-LBM) and Shu et al. [9] proposed the Tay-
lor-series-expansion and least-squares-based model. The former model overcomes the shortcoming by preserving the time
accuracy of the standard LBM using the time-dependent interpolation scheme between the lattice points and physical geom-
etry. However, it has an extra computational effort for interpolation at every time step and has a restriction of the selecting
interpolation scheme. Latter one can be consistently used in any type of lattice model. The final form of this algebraic for-
mulation depends on the coordinate of the mesh points and the lattice velocity, which are different from that in IS-LBM.
However this model has some problem in three-dimensional case, because this model needs to save a big matrix with geom-
etry information. On the other hand, there are two other approaches that more directly tackle complex geometries and
which have significant impact: (i) interpolated bounce back (IBB) approaches [10–12] and their generalization as a multire-
flection boundary scheme [13], (ii) volumetric bounce back schemes (VBB) [14–16]. These try to introduce cut-cell or subgrid
geometric information.

As another approach, the immersed boundary method (IBM) developed by Peskin [17–19] can be introduced for overcom-
ing the lack of a uniform lattice arrangement originated from the standard LBM, which complicates the simulation of the
flow around a complex shape body. As a computational fluid dynamics are applied to engineering problems as well as fun-
damental fluid mechanics, complex geometries and moving boundaries became one of the main issues. From this point of
view, IBM can be considered to be a solution for both problems [20]. Although complex geometries and moving boundaries
can be handled by an unstructured grid in the conventional numerical methods (FDM, FEM, and FVM), IBM has its own
advantages over the standard LBM. Since IBM is implemented using Cartesian coordinates, it allows the standard LBM to
keep its own accuracy. Computational costs and memory requirements are reduced and grid generation is easy. Even for
moving bodies, the grid does not have to be regenerated [20].

In the immersed boundary method, two main forms of the acting force have been proposed thus far – direct forcing and
feedback forcing. The direct method determines the forces based on the balance of the discretization equations after impos-
ing the desired velocities in the inertial term.

Otherwise, the feedback method treats the boundary as a deformable one with high stiffness. In this study, the feedback
forcing method is implemented. The feedback method has been used by Peskin [17–19,18], Goldstein et al. [21,22], Goldstein
and Tuan [23], Saiki and Biringen [24], and Lee [25]. Peskin [17,18] used momentum forcing to simulate the flow in a moving
heart on the Cartesian grid. Goldstein and his colleagues [21–23] used a spectral code to imitate scalloped shape ribs.
Although their method exhibited reasonable results, its suitability for more complicated shapes appears questionable con-
sidering the severe limitations of the time step.

On the other hand, since the forces are applied on grid points, the exact simulations of the surfaces do not coincide exactly
with the computational grid points; this causes the method to suffer from an interpolation deficiency. This difficulty be-
comes more pronounced when pressures or viscous forces at the surfaces are desired since the surface location is not well
determined. Lee [25] analyzed the stability of Saiki and Biringen’s [24] method and found that the linear interpolation of the
virtual boundary velocity and the subsequent spreading of the virtual forcing relax the time-step limit for stability by up to
four times. Through his analysis, the main disadvantage of the large time-step limit for stability in the feedback method
could be overcome.

The details of the feedback method can be found in Saiki and Biringen [24], which provides a detailed explanation of the
IBM and summarizes the collaborative researches over thirty years, mainly in the field of biological fluid dynamics. The IBM
is still being developed for complex geometries, moving boundaries, multiphase flows, and fluid–structure interaction.

Feng and Michaelides [26,27] proposed the immersed boundary lattice Boltzmann method (IB-LBM). In this approach, the
restitution force due to deformation is calculated by the direct methods. In order to improve the numerical stability of the IB-
LBM proposed by Feng and Michaelides [26,27], Niu et al. [28] proposed the momentum-exchange-based immersed bound-
ary lattice Boltzmann method by using the multi-relaxation collision model. This approach is a simpler and efficient method
for calculating the body force at immersed boundary points. Shu et al. [29] proposed the immersed boundary velocity
correction method (IBVCM). This method used the concept of the fractional step technique and is equivalent to make a
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correction in the velocity field from the adding a body force in the momentum equations. In addition, because the IBM can be
easily implemented to the LBM and has a great potential for moving boundary problems such as the particulate flows and the
deformable objects in fluids [30], many researchers have enhanced the computational efficiency and accuracy of the IB-LBM
[30–32]. These methods to incorporate the IBM into the LBM enhanced the capability of LBM for isothermal problems only
whereas many engineering problems have the thermal phenomena. Thus we need a new approach to solve the thermal prob-
lems using the IBM.

As above mentioned, there are numerous researches for the IB-LBM with direct forcing scheme [26–32]. However, based
on the authors’ survey of literature, it is hard to find that a literature has dealt with IB-LBM with feedback forcing scheme and
especially IB-thermal LBM with feedback forcing scheme. In spite of the well known shortcomings of the feedback forcing
scheme, it is worth to be further developed due to the simplicity of this scheme to be adopted into the different numerical
methods such as the finite-types methods and LBM. Consequently, the purpose of this study is the implement of the feedback
forcing scheme to the thermal LBM.

A body force acting on the immersed boundary is included in the governing equation as an external force. Shan and Chen
[33] introduced the concept of ‘‘equilibrium velocity” to consider the momentum change produced by the body force. The
equilibrium velocity included in the equilibrium density distribution function acts as a change of momentum. In this study,
unlike the IB-LBM proposed by of Feng and Michaelides [26,27], we included the external force in terms of the equilibrium
velocity proposed by Shan and Chen [33]. The IBM and LBM were combined using this alternative scheme with the equilib-
rium velocity concept which differs from that of Feng and Michaelides [26,27] for the momentum calculation. In order to
consider the heat transfer, we selected the same manner with the equilibrium velocity approach to calculate the thermal
lattice Boltzmann method using the double population approach proposed by He et al. [7]. In order to combine the IBM
and thermal LBM, we introduced an ‘‘equilibrium internal energy density” as a function of internal energy density and heat
source.

This paper is organized as follows. Section 2 reviews the 9-bit thermal LBM with the double population approach and the
feedback forcing method is explained and the calculation procedure used for implementing the equilibrium velocity and the
equilibrium internal energy density with immersed boundary forcing is introduced. Section 3 presents the numerical results
of the simulation of the flow in two-dimensional natural convection problems with circular or square cylinder in a square
enclosure using the thermal LBM. Section 4 concludes the paper.
2. Immersed boundary-thermal LBM

2.1. The thermal LBM

The governing equation of the LBM originates from the Boltzmann equation, expanding a basic formulation of lattice gas
automata (LGA) to the real number range; the LBM enhanced its application scope and numerical stability. Because the LBM
is derived from the LGA, the LB equation is introduced beginning from a discrete kinetic equation for the particle distribution
function:
fiðxþ cidt; t þ dtÞ ¼ fiðx; tÞ þXi: ð1Þ
In this equation, fi; ci; Xi; x and dt are the density distribution function, Cartesian component of ith lattice velocity, col-
lision operator along the ith direction, position vector along the Cartesian coordinate and time increment, respectively. The
subscript i is the particle direction which depends on the lattice model. The collision operator represents a proportion, which
particle distribution would be changed by a collision process. It should be pointed out that the position vector and the lattice
velocity vector are independent. The mathematical description of the underlying physical phenomena involved in collision
process is, in general, very complex. According to a single relaxation time model proposed by Bhatnagar, Gross and Krook
(BGK), the collision operator is simplified. Hence the lattice BGK equation is
Xi ¼ �
1
s

fiðx; tÞ � f eq
i ðx; tÞ

� �
; ð2Þ
where f eq
i is the equilibrium density distribution function, and s is the single relaxation time which controls the rate of ap-

proach from the non-equilibrium to the equilibrium state. If the Boltzmann equation is discretized by time and the velocity
at Navier–Stokes level, the final discretized equation would be an isothermal lattice Boltzmann equation. This process is
adapted to Boltzmann energy equation. The results by discretization using this process are the thermal lattice Boltzmann
equation which describes the macroscopic temperature variation. The double population approach proposed by He et al.
[7] is used as the thermal model in this study. In this model, the governing equation can be separated as an internal energy
density distribution gi and the density distribution fi to solve the temperature field and flow field, respectively,
�f iðxþ cidt; t þ dtÞ � �f iðx; tÞ ¼ �
dt

sf þ 0:5dt
�f iðx; tÞ � f eq

i ðx; tÞ
� �

þ sf dt
sf þ 0:5dt

Fi; ð3Þ

�giðxþ cidt; t þ dtÞ � �giðx; tÞ ¼ �
dt

sg þ 0:5dt
�giðx; tÞ � geq

i ðx; tÞ
� �

þ sgdt
sg þ 0:5dt

fiZi: ð4Þ
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The new variables �f i and �gi are defined as
�f i ¼ fi þ
0:5dt
sf
ðfi � f eq

i Þ; ð5Þ

�gi ¼ gi þ
0:5dt
sg
ðgi � geq

i Þ þ
dt
2

fiZi; ð6Þ

gi ¼
ðci � uÞ2

2
fi: ð7Þ
Here, geq
i is the equilibrium internal energy density distribution function. sf and sg are the relaxation times. Time incre-

ment and lattice space are dt ¼ dx ¼ 1. Zi represents the effects of viscous heating in Eq. (8)
Zi ¼ ðci � uÞ � ½@u=@t þ ðci � rÞu�; ð8Þ

Fi ¼
G � ðci � uÞ

RT
f eq
i ; ð9Þ
Fi is a body force and corresponded to the buoyancy force in this study in Eq. (9). G means the body force acting per unit
mass.

In all the simulations, a two-dimensional D2Q9 model was used. The equilibrium density distribution function and equi-
librium internal energy density distribution function [7] can be written as follows:
f eq
i ¼ xiq 1þ 3ci � u

c2 þ 9ðci � uÞ2

2c4 � 3u2

2c2

" #
; ð10Þ

geq
i ¼ xiqe

3ðc2
i � u2Þ
2c2 þ 3

3c2
i

2c2 � 1
� �

ðci � uÞ
c2 þ 9ðci � uÞ2

2c4

" #
: ð11Þ
The discrete velocity space for D2Q9 model is8

ci ¼

0 i ¼ 0;
ðcos½ði� 1Þp=2�; sin½ði� 1Þp=2�Þc i ¼ 1;2;3;4;ffiffiffi

2
p
ðcos½ði� 5Þp=2þ p=4�; sin½ði� 5Þp=2þ p=4�Þc i ¼ 5;6;7;8;

><
>: ð12Þ
where xi is a weighting coefficient, x0 ¼ 4=9, xi ¼ 1=9 for i ¼ 1;2;3;4 and xi ¼ 1=36 for i ¼ 5;6;7;8. e is the internal en-
ergy, that satisfies qe ¼ qRT . In the thermal model, the lattice speed is c ¼

ffiffiffiffiffiffiffiffiffiffiffi
3RT0
p

. T0 is the averaged temperature and R
is the gas constant.

The macroscopic density ðqÞ, velocity ðuÞ, internal energy per unit mass ðeÞ can be obtained from the following equations
of constraints in Eq. (13). The heat flux is Eq. (14). Kinematic viscosity and thermal diffusivity is Eq. (15)
q ¼
X

i

�f i;

qu ¼
X

i

�f ici; ð13Þ

qe ¼
X

i

�gi �
dt
2

X
i

fiZi;

q ¼
X

i

ci�gi � qeu� dt
2

X
i

cifiZi

 !
sg

sg þ 0:5dt
; ð14Þ

m ¼ sf RT0; a ¼ 2sgRT0: ð15Þ
2.2. Feedback immersed boundary method

Immersed boundary points generally do not coincide with the lattice nodes. The immersed boundary points are coupled
with the lattice nodes by an interpolation scheme. Then, the velocity information on the object’s surface is obtained from its
position. As shown in Fig. 1, the interpolation scheme uses four lattice points (i.e. forcing points) adjacent to the immersed
boundary point. The exact velocity on the immersed boundary node is calculated by a bilinear interpolation scheme. Bilinear
interpolation is used to determine the surface velocities with their position information. Momentum forcing is evaluated
using the feedback algorithm. The velocity difference between the desired velocity and the current velocity at the immersed
boundary is controlled to be minimized as time advances. The discrete surface points in Fig. 1 are the immersed boundary
points, xsðxs; ysÞ. Therefore, using the bilinear interpolation scheme, the velocity of the immersed boundary points uðxsÞ is
interpolated from the velocities ui;j at nearby lattice points in Eq. (16)
uðxsÞ ¼
Xiþ1;jþ1

i;j

Di;jðxsÞui;j; ð16Þ



Fig. 1. Forcing points related with immersed boundary points in Cartesian grid system.
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where Di;jðxsÞ ¼ dðxs � xiÞdðys � yjÞ and the distance ratio ðdÞ between lattice position and immersed boundary point can be
expressed as follows:
dðxs � xiÞ ¼
ðxs � xiÞ
ðxiþ1 � xiÞ

if xi < xs; ð17aÞ

dðxs � xiÞ ¼
ðxs � xi�1Þ
ðxi � xi�1Þ

if xi > xs; ð17bÞ

dðxs � xiÞ ¼ 1 if xi ¼ xs: ð17cÞ
In order to satisfy the no-slip boundary condition on the surface, the velocity has a feedback relationship with the flow
field and it should be converted to a body force. The momentum forcing Fmðxs; tÞwas proposed by Goldstein et al. [21,22] and
Saiki and Biringen [24]. The feedback momentum forcing function Fmðxs; tÞ can be expressed as
Fmðxs; tÞ ¼ af

Z t

0
½uðxs; t0Þ � Vðxs; t0Þ�dt0 þ bf ½uðxs; tÞ � Vðxs; tÞ�: ð18Þ
Here, the negative constants of af and bf have the dimensions with the reciprocal of time squared and the reciprocal of
time, respectively.

The velocity difference uðxs; tÞ � Vðxs; tÞ, which is actually the error, determines the feedback forcing, and the momentum
forcing controls the boundary velocity, uðxs; tÞ to be the same as the desired velocity Vðxs; tÞ. If the boundary does not rotate
or move, Vðxs; tÞ becomes zero and Eq. (18) reduces to Eq. (19). If the time integral is replaced with the Riemann sum for Eq.
(20), we obtain Eq. (21) for the feedback momentum forcing
Fmðxs; tÞ ¼ af

Z t

0
uðxs; t0Þdt0 þ bf ½uðx; tÞ�; ð19Þ

Z t

0
uðxs; t0Þdt0 ffi

XN

j¼1

uðxs; jÞdt; ð20Þ

Fmðxs; tÞ ¼ af

Xt0¼t

t0¼0

uðxs; t0Þ þ bf ½uðxs; tÞ�: ð21Þ
Using Eq. (21), the forcing density Fmðxs; tÞ at the immersed boundary is calculated and redistributed to the lattice points
near the immersed boundary. The sum of nearby forcing density multiplied by the weighting factor yields the momentum
forcing Fbðx; tÞ of nearby lattice points as the body force. The weighting factor is given by the interpolation scheme
Fbðx; tÞ ¼
1

Nb

XNb

n¼1

Di;jðxsÞFmðxsÞ: ð22Þ
Here, Nb is the number of immersed boundary points that affect the lattice point. The method prescribed above is the
‘‘area-weighted” method proposed by Saiki and Biringen [24].
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In order to simulate the thermal applications, Eqs. (18) and (22) can be rearranged about the heat source term. The feed-
back energy forcing density and heat source are expressed as follows:
Uðxs; tÞ ¼ ag

Z t

0
½eðxs; t0Þ � #ðxs; t0Þ�dt0 þ bg ½eðxs; tÞ � #ðxs; tÞ� ð23Þ

Hðxa; tÞ ¼
1

Nb

XNb

n¼1

Di;jðxsÞUðxsÞ ð24Þ
where # means desired internal energy on immersed boundary. The heat source H is applied to satisfy the thermal boundary
condition on the immersed boundary. The coefficients of ag and bg are negative constants and they have same dimensions
with the coefficients of af and bf , respectively.

2.3. A description of immersed boundary-thermal LBM

Based on the thermal lattice Boltzmann model using the double population approach in which the viscous heat dissipa-
tion term is neglected, the governing equations of the thermal lattice Boltzmann method are as follows:
�f iðxþ cidt; t þ dtÞ � �f iðx; tÞ ¼ �
dt

sf þ 0:5dt
½�f iðx; tÞ � f eq

i ðx; tÞ� þ
sf dt

sf þ 0:5dt
Fi; ð25Þ

�giðxþ cidt; t þ dtÞ � �giðx; tÞ ¼ �
dt

sg þ 0:5dt
½�giðx; tÞ � geq

i ðx; tÞ�: ð26Þ
If an additional external force Fb is acting, there is a change of momentum DP ¼ Fb; ðP ¼ quÞ at every time step. In order
to incorporate this into the model, an equilibrium density distribution can be accomplished by using
f eq�

i ðx; tÞ ¼ f eq
i ðq;u

�Þ and qu� ¼ quþ sf þ 0:5dt
dt

Fb: ð27Þ
In this equation, u� denotes the ‘‘equilibrium velocity”, which is given by Shan and Chen [33]. f eq�
i is the modified equi-

librium density distribution function with an equilibrium velocity. After the substitution of Eq. (27) into Eq. (25), multiplying
Eq. (25) by ci, and summing over all directions, the momentum conservation relation with the change in the total momen-
tum at each lattice is obtained
X
i

ci
�f iðxþ cidt; t þ dtÞ �

X
i

ci
�f iðx; tÞ ¼ �

dt
sf þ 0:5dt

X
i

ci
�f iðx; tÞ �

X
i

cif
eq�

i ðx; tÞ
 !

; ð28Þ

X
i

ci
�f iðxþ cidt; t þ dtÞ �

X
i

ci
�f iðx; tÞ ¼ �

dt
sf þ 0:5dt

X
i

ci
�f iðx; tÞ �

X
i

cif
eq
i ðx; tÞ þ

sf þ 0:5dt
dt

Fbðx; tÞ
 ! !

; ð29Þ

qðxþ cidt; t þ dtÞuðxþ cidt; t þ dtÞ � qðx; tÞuðx; tÞ ¼ Fbðx; tÞ: ð30Þ
From Eqs. (28)–(30), the body force is satisfied with the change in momentum DP ¼ Fb. From Eq. (11),
P

i
�gi ¼

P
ig

eq
i ¼ qe.

qe means an internal energy density and the internal energy is e ¼ DRT=2 (D: dimension: D ¼ 2 in D2Q9 model).
With the same procedure to satisfy the momentum conservation by an additional external force, the immersed boundary

with heat transfer can be adapted in the thermal lattice Boltzmann model. In this study, we would select the same manner
with the equilibrium velocity approach for the immersed boundary-thermal lattice Boltzmann method.

Now we define an ‘‘equilibrium internal energy density ðqe�Þ” as a function of internal energy density and heat source
qe� ¼ qeþ sg þ 0:5dt
dt

� �
H; ð31Þ
where H is a heat source. If a heat source H is acting, there is a change of internal energy Dqe ¼ H at every time step and the
modified equilibrium internal energy density distribution is defined as
geq�

i ðx; tÞ ¼ geq
i ðq; e

�Þ: ð32Þ
In this equation e� denotes the ‘‘equilibrium internal energy”. When the modified internal energy density equilibrium dis-
tribution is used instead of the internal energy density equilibrium distribution, the change in the internal energy density at
each lattice is obtained. Adopting the same method for expanding the internal energy conservation relation,
X
i

�giðxþ cidt; t þ dtÞ �
X

i

�giðx; tÞ ¼ �
dt

sg þ 0:5dt

X
i

�giðx; tÞ �
X

i

geq�

i ðx; tÞ
" #

; ð33Þ

X
i

�giðxþ cidt; t þ dtÞ �
X

i

�giðx; tÞ ¼ �
dt

sg þ 0:5dt

X
i

�giðx; tÞ �
X

i

geq
i ðx; tÞ þ

sg þ 0:5dt
dt

� �
Hðx; tÞ

 !" #
; ð34Þ
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qðxþ cidt; t þ dtÞeðxþ cidt; t þ dtÞ � qðx; tÞeðx; tÞ

¼ � dt
sg þ 0:5dt

qðx; tÞeðx; tÞ � qðx; tÞeðx; tÞ þ sg þ 0:5dt
dt

� �
Hðx; tÞ

� �	 

; ð35Þ

qðxþ cidt; t þ dtÞeðxþ cidt; t þ dtÞ � qðx; tÞeðx; tÞ ¼ Hðx; tÞ: ð36Þ
From Eqs. (33)–(36), the heat source is satisfied with the change in internal energy density Dqe ¼ H.

2.4. Boundary conditions

In order to satisfy the no-slip and constant temperature boundary condition, the non-equilibrium first order extrapolation
boundary condition proposed by Guo et al. [34] and the internal energy non-equilibrium first order extrapolation boundary
condition by Tang et al. [35] are used:
�fþi ðO; tÞ ¼ f eq
i ðqðBÞ;uðOÞ; tÞ þ ð1�xf Þ½�f iðB; tÞ � f eq

i ðB; tÞ�; ð37Þ
�gþi ðO; tÞ ¼ geq

i ðqðBÞ;uðOÞ; TðOÞ; tÞ þ ð1�xgÞ½�giðB; tÞ � geq
i ðB; tÞ�; ð38Þ
where xf ;g ¼ dt=ðsf ;g þ 0:5dtÞ, and ‘+’ denotes the ‘after collision step’.
Fig. 2 represents the direction and distribution of particles near the wall. As shown in Fig. 2, the DOA line is the wall

boundary satisfying no-slip, and the FBE line lies in the fluid. Ci is the direction of the particle. In this study, the non-equi-
librium first order extrapolation boundary condition needs only the value fi at node B. As shown in Eq. (37), because qðOÞ at
the wall is unknown, Guo et al. [34] substituted qðBÞ at node B into qðOÞ. Also Tang et al. [35] used a process similar to Guo
et al. [34]. Because the density at the wall node qðOÞ is calculated when �f i is calculated, qðOÞ is also known in �gi. Therefore the
internal energy equilibrium density function geq proposed by Tang et al. [35] is modified like Eq. (39). Also Eq. (38) modified
using this process can be Eq. (40).
geq
i ðO; tÞ ¼ geq

i ðqðOÞ;uðOÞ; TðOÞ; tÞ; ð39Þ
�gþi ðO; tÞ ¼ geq

i ðqðOÞ;uðOÞ; TðOÞ; tÞ þ ð1�xgÞ½�giðB; tÞ � geq
i ðB; tÞ�: ð40Þ
3. Numerical results and discussion

3.1. Natural convection in a square enclosure

For the purpose of thermal LBM code validation, the natural convection problem in a vertical/horizontal enclosure with-
out a body was tested. The configuration of the natural convection in a vertical enclosure (VE) given by de Vahl Davis [36]
consists of a 2-D square cavity with a hot wall on the left and a cold wall on the right side and other side walls are adiabatic
(see Fig. 3(a)). For the pure Rayleigh–Bénard convection in a horizontal enclosure (HE), the bottom and top wall are kept at
the hot and cold temperatures and the left and right walls are adiabatic (see. Fig. 3(b)). The natural convection and pure Ray-
leigh–Bénard convection have vertical/horizontal temperature gradients. The Rayleigh number (Ra) of the flow is defined by
Eq. (41) where DT ¼ TH � TL is the temperature difference between the hot and cold walls. Prandtl number (Pr) is fixed at
Fig. 2. Schematic plot of particle velocity at a wall boundary.



Fig. 3. Schematics of natural convection (a) and pure Rayleigh–Bénard convection (b).
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0.71. The computational domain and boundary condition is shown in Fig. 3. The height and width between the walls with
different temperatures are L
Ra ¼ gbDTL3

ma
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p� �2
L2

ma
; Pr ¼ m

a
: ð41Þ
The advance/backward difference law which has a second order accuracy was applied to the insulated adiabatic walls for
each case. For all cases, a 129 � 129 uniform grid was used for the Ra ¼ 103 and 104 and a 205 � 205 uniform grid was used
for the Ra ¼ 105 and 106.

The external force term F corresponding to the buoyancy force was given by Eq. (42) where G is the external force acting
per unit mass. b and g are the thermal expansion coefficient and acceleration due to gravity. j denotes the opposite direction
of gravity
F ¼ G � ðci � uÞ
RT

f eq
i ; qG ¼ qbgðT � T0Þj: ð42Þ
To simulate natural convection using the Boussinesq approximation, the viscous heat dissipation term is negligible. When
Rayleigh number is defined as Eq. (41), g and b are still unknown. He et al. [7] defined the characteristic velocity as
Vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgDTL

p
. The characteristic velocity was included in the body force term and plays the role of controlling the effect

of gravity not only the collision but also the constraints process. Also the characteristic velocity depends on the characteristic
length, the shape of computational domain and the gravity effect. Therefore the characteristic velocity should be determined
carefully. In this study, the relation between the characteristic velocity, thermal diffusivity, Ra, Pr is shown in Eq. (43). The
single relaxation times sf and sg are defined by Eq. (44), respectively
a
L
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgDTL

p
ffiffiffiffiffiffiffiffiffiffi
RaPr
p ; ð43Þ

sf ¼
VcL
RT0

ffiffiffiffiffiffi
Pr
Ra

r
; sg ¼

VcL

2RT0

ffiffiffiffiffiffiffiffiffiffiffiffi
Ra Pr
p : ð44Þ
Fig. 4 shows streamlines and isotherms of each case within the range of Ra ¼ 103—106. Fig. 5 shows the variation of nor-
malized temperature profiles, along the horizontal centerline ðy=L ¼ 0:5Þ of the square cavity for Ra ranging from 103 to 106

for the natural convection problem in a vertical enclosure.
Table 1 compares the results from the present simulation with previous results [36–38]. The surface-averaged Nusselt

numbers ðNuÞ at the hot wall for each case was compared for Ra less than 106. The present results agree well with those
of other researchers. Comparing with the results using the multi-domain spectral method with high accuracy, the maximum
error is 0.61% and 0.46% respectively. The local Nusselt number (Nu) and surface-averaged Nusselt number ðNuÞ at the hot
wall is defined by Eq. (45)
Nu ¼ � L
DT

@T
@n






Hot wall

; Nu ¼ 1
L

Z L

0
Nuds; ð45Þ
where n is the normal direction to walls.
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3.2. Natural convection with various shaped body in a square enclosure

3.2.1. Natural convection in a square enclosure with a circular cylinder
A schematic diagram of the computational geometry in 2-dimensional plane with uniform grid distribution is shown in

Fig. 6(a). The system consists of a square enclosure with sides of length L and a stationary circular cylinder is located in the
centre ðx ¼ y ¼ 0Þ of square enclosure with R ¼ 0:2L. The walls of the square enclosure were kept at a constant low temper-
ature of Tc whereas the cylinder was kept at a constant high temperature of Th. The fluid properties are also assumed to be
constant, except for the density in the buoyancy term, which follows the Boussinesq approximation of Eq. (42). The gravi-
tational acceleration acts in the negative y-direction. The immersed boundary method is used to handle the inner circular
cylinder in Cartesian coordinates. In these simulations to be reported here the Prandtl number has been taken to be 0.71
and Rayleigh number varies in the range of 103—106. The characteristic velocity is fixed at Vc ¼ 0:01c for Ra ¼ 103 , whereas
Vc ¼ 0:1c was used for Ra ¼ 104—106. A 101 � 101 uniform grid was used for Ra ¼ 103, whereas a 201 � 201 uniform grid
was used for Ra ¼ 104; 105 and 106. The relaxation times for isothermal and thermal were determined by Eq. (44).

In a very recent work [32], it has been pointed out that when the IBM is used in the LBM, it can result in an artificial
boundary slip whose magnitude is dependent on the relaxation time. Thus, in order to estimate the dependence of the l2-
norms on the sf and sg according to Pr in the present thermal flow problems, we have carried out the analysis of the l2-norm
in the velocity and the temperature at the immersed boundary points according to Pr.
Fig. 4. Streamlines and Isotherms for different Rayleigh numbers ðRa ¼ 103—106Þ. (Left : Natural convection, Right : Pure Rayleigh convection)



Fig. 5. Normalized temperature profiles at y=L ¼ 0:5 for different Rayleigh numbers ðM : 103; � : 104; � : 105; O : 106Þ.

Table 1
Comparison of the present calculation for surface-averaged Nusselt number at the hot wall with the previous results in vertical enclosure (VE) and horizontal
enclosure (HE).

Ra Surface averaged Nusselt number at the hot wall ðNuÞ

Present Ref. [22] Ref. [23] Ref. [24] Difference (%)

VE 103 1.118 1.118 1.117 1.118 0

104 2.249 2.243 2.235 2.246 +0.13

105 4.553 4.519 4.504 4.525 +0.61

106 8.767 8.800 8.767 8.821 �0.61

HE 103 1.000 – – 1.00 0

104 2.170 – 2.195 2.16 +0.46

105 3.925 – – 3.91 +0.38

106 6.329 – – 6.30 +0.46
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Fig. 7 shows the l2-norms in the velocity ðl2;V Þ and the temperature ðl2;TÞ according to Pr on the immersed boundary points
at Ra ¼ 104. The l2;V and l2;T at the immersed boundary points are defined as, respectively,
l2;V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nb

XNb

n¼1

ðun � udÞ2 þ ðvn � vdÞ2
h ivuut ; ð46Þ

l2;T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nb

XNb

n¼1

ðTn � TdÞ2
vuut ; ð47Þ
where un ¼ ðun;vnÞ and Tn are the velocity and the temperature on nth Lagrangian point at the immersed boundary, respec-
tively, and ud ¼ ðud;vdÞ and Td are the desired velocity and the desired temperature at the immersed boundary, respectively.

The magnitude of both l2-norms of l2;V and l2;T decreases with increasing Pr as shown in Fig. 7. This indicated the no-slip
boundary condition of velocity and the isothermal condition at the immersed boundary do not satisfy well when Pr becomes
smaller in the range of Pr considered in this study. Since Pr governs the relaxation times of sf and sg as defined in Eq. (44), the
magnitude of sf and sg on the l2-norms of l2;V and l2;T according to Pr can be measured from the Table 2. With decreasing Pr,
the l2-norms increase as shown in Fig. 7, simultaneously, sf diminishes and sg augments as shown in Table 2. In the present
thermal flow problems, the effect of sg on the l2-norms is dominant rather than sf . Consequently, when sg as one of relax-
ation times in the double population function becomes relatively large in the present thermal flow problems, the l2-norms
become large, which means that the artificial boundary slip and the artificial boundary temperature on the immersed bound-
ary become noticeable. This result is consistent with the findings of Le and Zhang [32].

The values of the relaxation times of sf and sg used in this study are small enough to neglect the artificial boundary slip
and the artificial boundary temperature as revealed in Table 3, which can be guaranteed by above analysis of the l2-norms.



Fig. 6. Description of computational domain and boundary conditions for two different cases: a circular cylinder (a), and a square body (b) in a square
enclosure.

Fig. 7. l2-norms in the velocity ðl2;V Þ and the temperature ðl2;T Þ according to Pr for the natural convection with a circular cylinder in a square enclosure at
Ra ¼ 104.

Table 2
Relaxation times and l2-norms corresponding to Pr.

Ra Pr Vc sf sg l2;V l2;T

104 0.01 0.1 0.03 1.5 1:679� 10�2 5:906� 10�3

104 0. 1 0.1 0.095 0.474 6:246� 10�5 1:240� 10�4

104 0.71 0.1 0.253 0.178 3:089� 10�5 6:033� 10�5

104 1 0.1 0.3 0.15 2:825� 10�5 3:252� 10�5

104 10 0.1 0.948 0.047 1:882� 10�5 1:049� 10�5
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It is well known that the role of af is to produce the natural oscillation of the response enforcing the no-slip boundary
condition at each immersed boundary points, while bf plays a role in damping the oscillation of the response. But, there
is no general rule to determine the optimum values of af and bf , regardless of the problems, because the values of af and
bf significantly depend on the simulation conditions such as the numerical methods and the boundary conditions. Thus,
there are few researches to find the effect of these conditions on the selection of the values of af and bf . Representatively,
Lee [25] has investigated the stability characteristics to derive a guideline for selecting af and bf when various time
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advancing schemes and the corresponding stability limit of the feedback forcing immersed boundary method. Also, Saiki and
Biringen [24] examined the response of the feedback forcing on the immersed boundary points for combination of af =bf .
They reported l2-norm error of the velocity at the boundary points about the no-slip boundary condition with time.

Thus, in order to determine the possible range of the forcing constants, we have considered the stability conditions [25]
and the characteristics of the response [24] corresponding to af =bf and ag=bg both flow and thermal fields. As a result,
af ¼ �10�4 and bf ¼ �6� 10�7 for momentum forcing and ag ¼ �10�4 and bg ¼ �6� 10�7 for internal energy forcing have
been selected for all the present simulations.

Fig. 8 compares the isotherms and streamlines obtained by the present study using the present method and the finite
volume method with an immersed boundary method given by Kim et al. [39]. Very good agreement is achieved in the
Table 3
Relaxation times corresponding to non-dimensional parameters and characteristic velocity.

Ra Pr Vc sf sg

103 0.71 0.01 0.079937 0.056294

104 0.71 0.1 0.505569 0.356034

105 0.71 0.1 0.159875 0.112588

106 0.71 0.1 0.050557 0.035603

Fig. 8. Comparison of isothermals and streamlines for four different Rayleigh numbers in case of a circular cylinder in a square enclosure. (left: present
method, right: Ref. [25]).
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patterns of the isotherms and the location of the center of vortices. For all Rayleigh numbers, the isotherms and streamlines
are perfectly symmetric shape on the centerline of the square enclosure. Warm fluid heated from a circular cylinder wall
rises and spreads out over the top cold walls. After the flow reaches near the top cold wall, it makes the descending current
along the cold side wall toward bottom cold wall. Owing to the regularly spaced roll cells circulating in the clockwise direc-
tion at the right side and counter-clockwise direction at the left side on the centerline of the square enclosure.

For Ra ¼ 103, the heat transfer in the enclosure is mainly dominated by the conduction mode. The circulation of the flow
shows two overall rotating symmetric eddies with two inner vortices respectively as shown in Fig. 8(a) for the streamlines.
At Ra ¼ 104, the patterns of the isotherms and streamlines are about the same as those for Ra ¼ 103. However, a careful
observation indicates that the thermal boundary layer on the opposite side and the inner lower vortex slightly becomes
smaller in size and weaker in strength compared with the upper one, because the effect of convection on heat transfer
and flow increases with increasing the Rayleigh number. As the Rayleigh number increase up to Ra ¼ 105, the role of con-
vection in heat transfer becomes more significant and consequently the thermal boundary layer on the surface of the inner
cylinder becomes thinner. Also, a plume starts to appear on the top of the inner cylinder and as a result the isotherms move
upward, giving rise to a stronger thermal gradient in the upper part of the enclosure and a much lower thermal gradient in
the lower part. In consequence, the dominant flow is in the upper half of the enclosure, and correspondingly the core of the
recirculating eddies is located only in the upper half. At this Rayleigh number, the flow field undergoes a bifurcation where
two inner vortices merge. The flow at the bottom of the enclosure is very weak compared with that at the middle and top
regions, which suggests stratification effects in the lower regions of the enclosure. At Ra ¼ 106, the heat transfer in the enclo-
sure is mainly governed by the convection mode. Since the convection velocity significantly increases with increasing Ray-
leigh number, the boundary layer behavior can be clearly observed in regions of the lower part of cylinder and the upper part
of the enclosure as shown in isotherms of Fig. 8(d). The thermal boundary layer separates from the surface near the top of the
cylinder and as a result a strong plume appears. As a result, the flow strongly impinges on the top of the enclosure, which
also leads to form a thinner thermal boundary layer in this region and enhances the heat transfer. Tiny symmetric vortices
appear in the vicinity of the bottom wall of the enclosure owing to the separation of the boundary layer by the strong con-
vective flow.

Table 4 shows the present numerical results together with those of previous numerical results at Ra ¼ 103—106. Kim et al.
[39] solved this problems using Navier–Stokes equations with the immersed boundary method. Shu and Zhu [40] solved this
problem using the differential quadrature (DQ) method. Taylor-series-expansion and least-squares-based LBM was applied
Table 4
Comparison of the present calculation for surface-averaged Nusselt number at a cylinder surface with the previous results.

Ra Surface averaged Nusselt number at a cylinder surface ðNuÞ

Present Ref. [39] Ref. [40] Ref. [41] Ref. [42] Difference (%)

103 3.399 3.396 – – –

104 3.412 3.414 3.24 3.24 3.331 2.432

105 5.176 5.138 4.86 4.84 5.08 1.889

106 9.171 9.39 8.9 8.75 9.374 2.165

Fig. 9. Time history of surface-averaged Nusselt number at the hot wall. (Vc ¼ 0:1 at all cases).
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by Peng et al. [41] to simulate this natural convection problem. Moukalled and Acharya [42] solved the Navier–Stokes equa-
tions using a control volume-based numerical simulation in a body fitted coordinate. All these results are in good agreement
with the benchmark results.

3.2.2. Natural convection in a square enclosure with a square body
In this study, we observed the fluid flow and thermal fields for the natural convection in an enclosure with a square body

at the centre. A schematic of a two-dimensional geometry with uniform grid distribution is shown in Fig. 6(b). The system
consists of a square enclosure with sides of length L and a stationary square body with side of length L=3 is centred. The bot-
tom wall is kept at a constant high temperature of Th, whereas the top wall is kept at a constant low temperature of Tc . The
square body is kept at a constant a half of high temperature of Tm ¼ ðTh þ TcÞ=2. The left and right side walls are adiabatic.
Boussinesq approximation and characteristic velocity owing to the gravitational acceleration, Rayleigh number and Prandtl
number were defined by the same manner with previous calculation about natural convection flow in a square enclosure
with a circular cylinder. The Rayleigh number varies 103—105. The characteristic velocity and grid resolution are fixed at
Vc ¼ 0:1c and 101 � 101 for all Rayleigh numbers. Also the relaxation times for isothermal and thermal were determined
by Eq. (44). For all Rayleigh numbers considered in this study, the flow and thermal fields eventually reach steady state
as shown in Fig. 9. The non-dimensional time ðt�Þ is defined as a diffusion time scale in Eq. (48)
Fig. 10.
method
t� ¼ Vct
L

ffiffiffiffiffiffi
Pr
Ra

r
ð48Þ
Comparison of isothermals and streamlines for four different Rayleigh numbers in case of a square cylinder in a square enclosure. (left: present
, right: Ref. [29]).
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Fig. 10 compares the isotherms and streamlines obtained by the present study using the present method and the spectral
multi-domain method with high accuracy given by Ha et al. [43]. Very good agreement is achieved in the patterns of the
isotherms and the location of the center of vortices. When Ra ¼ 103 and 4� 103, the values of isotherms at the lower part
ð�0:5 < y < 0Þ are in the range of 0.5–1, and those at the upper part ð0 < y < 0:5Þ are in the range of 0–0.5 as shown in
Fig. 10(a) and (b). The thermal gradient in the upper half of the enclosure is symmetric to that in the lower half and there
is also a left-right symmetry and the vertical centreline. Thus the streamlines at Ra ¼ 103 and 4� 103 form four symmetric
vortices circulating in the clockwise and counter-clockwise directions. The direction of rotation of these cells is uniquely
determined by the thermal boundary condition. Owing to top–bottom symmetry away from the square body, the temper-
ature along the centreline ðy ¼ 0Þ is dictated to be T ¼ Tm, while the temperature on top of the square body is held fixed at
T ¼ Tm. Thus, as we move away from the body at the same elevation as the top of the body, the temperature can be seen to
decrease. This explains ascending flow on top of the square body, with the corresponding upward return flow away from the
body for y > 0. Similar argument can be used to explain the descending flow below the square body with the corresponding
upward return flow in the interior for y < 0.

When the Rayleigh number increases to Ra ¼ 104, the symmetric shapes about x ¼ 0 and y ¼ 0 of isotherms and stream-
lines at Ra ¼ 103 and 4� 103 are broken and changed their shapes to diagonally symmetric ones. The four vortices formed at
Ra ¼ 103 and 4� 103 merge with a single cell at Ra ¼ 104. The streamline circulates in the clockwise direction, due to the
presence of bottom hot and top cold walls. Because the isotherms follow the flow fields, the hot fluid at the left corner of
the bottom hot wall is lifted and moves upward along the left channel between the body and left adiabatic wall. If the
ascending flow meets the cold top wall and moves along the top channel between the top cold wall and the body, it is cooled
by the presence of the top cold wall. The cooled heavier fluids moves downward through the right channel between the body
and the right adiabatic wall, under the similar mechanism of ascending flow at the left channel. Thus the gradient of iso-
therms increases along the left channel and decreases along the right channel, with increasing elevation from the bottom
wall.

When the Rayleigh numbers increase to 105, the fluid flow and temperature fields reach the final steady state after start-
ing oscillatory transients. Thus the isotherms and streamlines in Fig. 10(d) show the temperature and velocity fields at the
final steady state at Ra ¼ 105. Since the isotherms follow the main flow circulating in the clockwise direction, the isotherms
at Ra ¼ 105 rotate further and become more tilted in the flow direction, due to increasing clockwise convective velocity with
increasing Rayleigh number, compared with those at Ra ¼ 104. Thus the thermal gradients become sharper at the top cold
and bottom hot walls, giving increasing heat transfer rates at those walls with increasing Rayleigh number. The locations,
where the thermal gradients are highest, moves from the left top and right bottom corners to the center of the top and bot-
tom walls, due to the rotation of isotherms with increasing Rayleigh numbers, as shown in Fig. 10(d). The isotherms at the
central core region at Ra ¼ 105 are better mixed with decreasing thermal gradient than that at Ra ¼ 104. Due to the increas-
ing intensity of main clockwise vortex at Ra ¼ 105, the size of the secondary counter-clockwise vortices at the left top and
right bottom corners increases. Thus the gradient of isotherms at the left top and right bottom corners increases. Thus the
gradient of isotherms at the left top and right bottom corners decrease and the isotherms at the top and bottom walls ap-
proach the symmetric shape about the vertical centreline.

Fig. 11 shows comparison the surface-averaged Nusselt number at the hot bottom wall and cold top wall with the pre-
vious results [43] for different Rayleigh numbers. The surface-averaged Nusselt number at Ra ¼ 4� 103 is almost same as
Fig. 11. Comparison of the present calculation for surface-averaged Nusselt number at a hot wall (a) and cold wall (b) with the previous results.



Fig. 12. Time history of surface-averaged Nusselt number at the hot wall for various characteristic velocity at Ra ¼ 104.
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that at Ra ¼ 103, because the flows and isotherms maintain their symmetric shapes. When Ra ¼ 104, the distribution of flow
around a hot wall does not maintain the symmetric patterns and the isotherms have a strong gradient at the hot and cold
walls. The surface-averaged Nusselt number at hot and cold walls increases generally due to increasing strength of convec-
tion with increasing Rayleigh number. The general trend of the surface-averaged Nusselt number at the cold wall is similar to
that at the hot wall.

The CPU time (s) spent in the present method on the P4 2.41G personal computer with Windows XP operation system is
given. A total CPU time is about 39,965 s up to 300,000 iterations when the numbers of the lattices and the IB points ðNbÞ are
40,000 and 1998, respectively. The CPU time spent to solve immersed boundary is about 343.67 s, resulting in only about 1%
of the total CPU time.

3.2.3. Effect of the characteristic velocity for natural convection flow with a square body
The characteristic velocity ðVcÞ contains the effect of gravitational acceleration, thermal expansion, characteristic length

and temperature difference between the hot and cold wall. After we find the proper characteristic velocity, the Rayleigh
number can be defined by the characteristic velocity and Prandtl number. The characteristic velocity plays role of the major
parameter to represent the thermal expansion and characteristics of the thermal flow. Most researchers carefully choose the
characteristic velocity with the increase of the Rayleigh number beyond the incompressible limit. From this study, we can
find the influence of the characteristic velocity inside the square cavity for natural convection flow. As shown in Fig. 9, for
Ra ¼ 104, the surface-averaged Nusselt number at the hot wall maintains the value of Ra ¼ 103 or Ra ¼ 4� 103, and then
after t� ¼ 6, it jumps up suddenly. It means the flows near a single square body in the enclosure form four symmetric vortices
circulating in the clockwise or counter-clockwise direction before t� ¼ 6. After t� ¼ 6, the flows start the secondary flow
developing and make a large circulation on a square body finally. The temperature distribution is changed as flow motion
and Nusselt number at the hot wall will be changed. After the flow formation is changed fully, the flows are stabilized
and Nusselt number at the hot wall maintains the steady state. However, if the characteristic velocity will be changed, a
point of time to start the secondary flow developing will be changed. We can confirm this phenomenon in Fig. 12. Time his-
tory of surface-averaged Nusselt number at the hot wall for various characteristic velocities at Ra ¼ 104 was shown in Fig. 12.
All the parameters and the number of grid nodes are the same for each case except for the characteristic velocity. As shown
in Fig. 12, the characteristic velocity increases, as the secondary flow developing occurs earlier and the computational time
decreases. However there is undesired overshoot at the end of secondary flow developing. This overshoot decreases, as the
characteristic velocity increases. When we defined the characteristic velocity smaller than 0.2, the numerical instability may
be increased.

Because the single internal energy relaxation time is influenced by the characteristic velocity, thermal diffusivity will be
increased. Therefore the flow and temperature field are changed rapidly in comparison to the case of small characteristic
velocity. Conversely, when the characteristic velocity decreases, the undesired overshoot decreases and computational time
may be increase. From these characteristics of the characteristic velocity, we can find that the characteristic velocity is re-
lated with the numerical stability and computational time.

4. Conclusions

In the present study, the immersed boundary method is implemented in the thermal lattice Boltzmann method. A new
approach, called Immersed boundary-thermal lattice Boltzmann method, which used the equilibrium velocity and the



equilibrium internal energy density to combine the two different grid systems, an Eulerian grid for the flow domain and a
Lagrangian grid for the immersed boundary points in the flows with heat transfer, has been developed.

In order to calculate the thermal fields without bluff body, the thermal lattice Boltzmann method with the double pop-
ulation model has been used to simulate the natural convection in a square cavity and pure Rayleigh–Bénard convection re-
sult in giving a good agreement with previous results.

In case of heat transfer with bluff body, the heat source term from the immersed boundary method could be simply trans-
lated to the equilibrium internal energy density. Without the additional external force and heat source term during the col-
lision calculation, this approach can maintain the advantages of the thermal lattice Boltzmann method and handle the
immersed boundary points.

The natural convections in a square enclosure with circular and square body were simulated and compared with those of
previous results. The numerical results agreed well with the benchmark data.
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